Software Coding Standards

3.0 SOURCE CODE FORMAT STANDARDS

Try not to be redundant with the SDS. Note that you can merge the two documents into one if you
choose as long as you clearly describe your coding standards. What follows is a good set of
standards to follow but ensure you enhance with your own corporate standards, especially if
they are stricter.

While the <doc-ref#>_SDS included some coding guidelines that intersected with design
guidelines, this section is more explicitly tuned to the standards that will be used for the
code development itself.

3.1 General Code Formatting Guidelines
The general code formatting guidelines shown in Table 3-1 shall be met during coding.

Table 3-1. General Code Formatting Guidelines

Category Guideline

Line Length Maximum 132 characters per line.
80 characters per line or less is preferred.

Indentations Spaces Only, in sets of 3 or 4 (Never Use Tabs)

Blank Line Usage: Blank lines should be used liberally for readability
o0 Use one (1) blank line inside functions.

o0 Use two (2) blank lines between functions.

0 Use three to four (3 - 4) blank lines between file sections.

0 Avoid more than four (4) blank lines together.

Blank Lines

Other Use of Spaces:

Spaces .

P o Place a single space before and after each operator or control
statement.
o Place a single space after each comma in a function parameter
list.

o Be consistent with the use of spaces in the opening and closing
parentheses of a function call or function declaration. Prefer placing a
single space after each open parenthesis and before each close
parenthesis

Naming See section 4.0 "NAMING CONVENTIONS.”
Conventions

3.2 Required Code Format
The following code standard template shall be used for all code development.

/] == e e e
// <PRODUCT>, <PROCESSOR>
L ECEEEEEREERES

A R e e e e L b
// NOTICE: All rights reserved.
//

<Doc Number> Page 10 of 26 Rev. -

Software Coding Standards

// Project : Project Name
// Subsystem : Subsystem name (if applicable)

// Filename : filename.c

// Author : John W. Smith
// Revision : 1.0

// Updated : dd-mmm-yy

// This module contains..

// Revision Log:
// Rev 1.0 : dd-mmm-yy, jws -- Original version created.

// Rev 1.1 : dd-mmm-yy, jws -- <Change Description>

// Design Details and Explanations:
// o The original...

// o This task still makes use of...

// Implementation Notes:
// o There is a "sticky" design issue that occurred to me...

// o Still need to deal with...
//
[e e

[e e e e
// Include Files
[e e

#include <std.h>
#include <sys.h>
#include <que.h>

<Doc Number> Page 11 of 26 Rev. -

Software Coding Standards

#include "sysdefs.h"
#include "fault.h"

// This defines the rate (in milliseconds) in which the CVR
// Status word will be output via the ARINC 429 output port

#define STATUS OUTPUT RATE 1000

et
// Local Conditional Compilation Switches

[/ S
// Note: Certain of these switches are intended only for debug and analysis
// of conditions observed during development.

et
#define DEBUG_TRACE 0 // Nonzero = Enable Debug Trace output

[/ S
// Global Variables
et

// This contains the DLR serial number as received from the
// SMP via the TDM bus during the SMP/FDP startup exchange.

char DLR serial num[10];

/] e e e
// Begin Code
/] mmm e

[/ S
//
// GetWord - Get word at specified bit offset

//

// This function...

//

// Params : bit offset - This is the offset from the beginning of the

// buffer to start assembling the bits for the word
// to be returned.

//

// Returns: This routine returns...

//
et

unsigned int GetWord(long bit offset)
{

code. ..

}

Figure 3-1. Standard Code Template

<Doc Number> Page 12 of 26 Rev. -

Software Coding Standards

3.3 Formatting of Existing Modules

If no discernable style is present in existing code, the file shall be reformatted according to
the Coding Standards presented in this document.

If a discernable style is present in the existing code, but the style differs from the Coding
Standard, consider reformatting the code to follow the Coding Standard.

Normally this is not an issue; however, code may be inherited into the project that was not
produced by the local development team. Anything not explicitly standardized in this Coding
Standard is left to the discretion of the engineer. When it does not conflict with the Coding
Standards, prefer following nuances of existing code format.

<Doc Number> Page 13 of 26 Rev. -

Software Coding Standards

4.0 NAMING CONVENTIONS

Update with your own naming conventions. Be as specific as possible.

The naming convention guidelines specified in Table 4-1 shall be followed in all code
development.

Table 4-1. Naming Conventions Used in Coding

Category Guideline

Abbreviations Abbreviations shall be used if they are either commonly used in
the application domain (e.g., FFT for Fast Fourier Transform), or
they are defined in a project-recognized list of abbreviations.
Otherwise, it is very likely that similar but not quite identical
abbreviations will occur here and there, introducing confusion and
errors later (e.g., track_identification being abbreviated trid,
trck_id, tr_iden, tid, tr_ident, and so on).

Names Names shall be chosen from the usage perspective and use
adjectives with nouns to enhance local (context specific) meaning.
Names shall also agree with their types.

Case Names that differ only by (upper/lower) case shall not be used.

Underscores The use of two underscores ('__") in identifiers shall not be used
as it is reserved for the compiler's internal use according to the
ANSI-C standard. Underscores ('_') are often used in names of
library functions (such as "_main" and "_exit"). In order to avoid
collisions, do not begin an identifier with an underscore.

Long Names Identifiers shall not be extremely long, to reduce the risk for name
collisions when using tools that truncate long identifiers.

Spelling English words in names shall be spelled correctly and conform to
the project required form of U.S. English. This is equally true for
comments.

Class A common noun or noun phrase in singular form shall be used to

give a class a name that expresses its abstraction. Use more
general names for base classes and more specialized names for
derived classes. Classes shall be named so that "object.function"
is easy to read and appears to be logical

Function Verbs or action phrases shall be used for functions and methods.
Use adjectives (or past participles) for functions returning a
Boolean (predicates). For predicates, it is often useful to add the
prefix "is" or "has" before a noun to make the name read as a
positive assertion. This is also useful when the simple name is
already used for an object, type name, or an enumeration literal.
Be accurate and consistent with respect to tense.

Negative names shall not be used as this can result in expressions
with double negations (e.g., l!isNotFound) making the code more
difficult to understand. In some cases, a negative predicate can
also be made positive without changing its semantics by using an
antonym, such as "isInvalid" instead of "isNotValid".

<Doc Number> Page 14 of 26 Rev. -

